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Abstract—Dynamics of admixture consumption from gaseous flow during a reaction with a solid reactant is
expressed in terms of a set of two partial differential equations. The analytical solution to the problem is found.
The solution is illustrated by the plots of admixture distribution in the gas and absorbent.

The problem of dynamics of admixture consump-
tion from a gaseous or liquid flow has a variety of tech-
nical applications, including environmental safety. The
dynamics of catalyst poisoning by an admixture in a
gaseous flow belongs to the same class of problems.

The two most general technical solutions for the
removal of an admixture from a gaseous flow are
reduced to admixture consumption by an absorbent or
a chemical reaction with a solid reactant.

The problem of admixture consumption at a linear
rate ® by absorption was considered by Tikhonov and
Samarskii [1] based on the solution proposed in [2].
These authors formulated the problem as set (1) of two
partial differential equations with respect to the
unknowns c(/, t) and a(l, ), which are the concentra-
tions of absorbed substances in the gas and absorbent,
respectively:
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dl ~ dr ot
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with the initial conditions ¢(/, t=0)=0and a(/,t=0)=0
and the boundary condition c(/ =0, t) = C, where [ is the
coordinate along the axis of the gaseous flow, 7 is time,
and w is the linear gaseous flow rate.

In the case of the Henry isotherm c,, = Ya (where y
is the Henry coefficient), the authors suggest an analyt-
ical solution. In the case of the Langmuir isotherm, the
solution to the problem can be obtained by the finite-
difference method.

This paper is devoted to the problem of admixture
consumption from a gaseous or liquid flow by the reac-
tion with a solid reactant (absorbent).

A mathematical description for admixture con-
sumption from the flow is determined by the fact that
the concentration of an absorbed substance affects the

rate of consumption, and this concentration changes
along the absorbent bed. The properties of an absorbent
change along the bed and with time. Let us briefly con-
sider the physical model of the process.

Suppose a gaseous flow containing an admixture
reacts with an absorbent in a cylindrical flow-type plug-
flow reactor and the reacted absorbent loses its reactiv-
ity and becomes inert. The proper rate of consumption
depends on the absorbent properties and concentrations
of absorbed admixture in the gas. The dependence of
the rate of consumption W on the admixture concentra-
tion in the gaseous flow can in most cases be described
by the second-order equation. If we neglect the diffu-
sion control, the dependence of the consumption rate
on the absorbent concentration (or, to be more exact,
the residual absorbent capacity) can be described in an
analogous way. We can assume that the rate of con-
sumption is proportional to the concentration of the
admixture in the gas, and the current absorbent capacity
is W=kc(1 — x), where k is the rate constant of the inter-
action of the absorbent with the admixture; x is the

. a
absorbent conversion x = i expressed as the amount of

reacted absorbent a divided by the total absorbent
capacity A. For the absorbent bed in a flow reactor, this
equation characterizes the situation in an arbitrary sec-
tion of the absorbent at a certain distance / from the
edge of the bed, and x(/, ) is determined as a fraction of
the reacted absorbent in this section at the time z.

Then, for the rate of reacted absorbent accumulation
in the section /, we can write the equation

%‘ - kc(l -%). @)

This equation is linear with respect to unknown func-
tions, which makes it different from the second equa-
tion of set (1).

To describe a change in the concentration of the
admixture in the gaseous flow due to its consumption,
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we can use an equation that is analogous to the first
equation in set (1) proposed by Tikhonov and Samar-
skii.

Thus, we have the following set of equations:

dc _ dc , da
Iar TR TR T

da a
5 = *{(1-3)
with the initial conditions ¢(/,t=0)=0and a(/,1=0)=0

and the boundary condition ¢c(I=0,1=C (where a has
the concentration units as in set (1)).

To solve set (3) of equations, let us change variables
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in terms of
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Let us express c(/, T) using the second equation: ¢ =
1 da a _ of
T and denote f{l, T)by A—a (when 3% =5t
__Aldf « simplified:
and ¢ =- kF a‘c) . Then, the set is simplified:
c
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Let us differentiate the second equation of set (6) with

respect to / and equate it to ?)—7 from the first equation:
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The latter expression can be rear-
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or because A =1,

ac_gfz_
TR

oa a
e kc(l A)'

Let us consider how the initial and boundary conditions
change. At T =0/ = wt. By this time, the gas reached the
section /, and then a(l, t=0)=0. At /=01 =1, and the
boundary condition does not change: ¢(I=0, 1) = C. If
we fix the parameter [ = 0, the set of differential equa-

tions is reduced to an ordinary differential equation
with respect to a(l = 0, T) = a(t) and the initial condition

C))

a(t=0) = 0. Then we obtain the equation A da +a=

kC dr

~§kr
A whose solutiona(l=0,1t)=A(1-¢ A

ary and initial condition for a(l, 7).
If we fix the parameter T = 0, we obtain an analogous
condition for c¢(/, t), and solve equation c(l, T=0) = c(l)

) is the bound-

for —m% = kc with the initial condition ¢{({ = 0) = C.

k

.y

Then, we arrive at ¢(/, T=0)=Ce ©
Thus, the initial set (3) is transformed into

—%k‘r
a(l =0, 1) = A(l—e )

_k,

c(l,Lt=0)=Ce"®

&)

ranged as follows: g l(jlfg + Ak gf Let us then use
19f 19f
the identity al(fat) Bt(fal)
_a_(ly)_'_ kaf . (16f+_ )_
0T\ fol ) Awot ot\fal -

The last expression means that the term inside
the brackets is independent of T and equals some func-

tion A(l): }g{

the solution to our problem.

After switching to complete derivatives, the latter
expression is a Bernoullian ordinary differential equa-
tion with respect to f{l), which is solvable by the stan-

+ — f h(]). This allows us to obtain

dard substitution z = ch . With the initial condition f{/ =
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0 = Ae , it has the solution: f(l, 1) =

!
e j AV
A 7

j Jlt(k)(lk

. Using the second equation of

C
—Akr
the set, we find ¢([, ©) = C < 7
c 1 frya
e” + —je 0 dl
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apply the condition c(/, T=0) = Ce *

ol k
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E(em — 1), and the derivative in [ is
! k
jh(k)dl 0_)1
e =e” .

0 =

. Let us

; then, we have

s . l
After substituting the last expression and T =t — 3

into formulas for fI, 1) and c(/, 1), we find the final
expression (7).

Cof, !
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e Y re® -1 N
Y
e 1) = C——

—klt~— 2y
e’ = +e” -1
By dividing (7) by a(/, f) and c(l, t), we arrive at a
rather simple expression:

C 1
a_A +(-3)
- = Z‘(l —e ] ®)

Another important property of the above solution is
associated with the equality

A(oln e 9)
ey gy J
o ®
e +e -1

j[a(t, ) +e(l, 0)]dl =

ot
from which we have SJ [a(l, ) + c(l, 1)]dl = CSwt equal

0
to the amount of admixture supplied to the reactor by
the time 1.

For the illustration, we constructed the plots for c(, 1)
and a(l, 1) for sequential time intervals using the follow-
ing set of rate parameters k = 1.0, ® = 1.0, C = 1.0, and
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Fig. 1. Admixture concentration profiles in the absorbent
along the reactor axis.

A = 1.0 (Figs. 1 and 2). As can be seen from these fig-
ures, the distribution of concentrations in the gaseous
flow for this set of parameters is close to frontal. It is
also seen that the concentration profiles of the admix-
ture in the gas and absorbent become more similar with

time. This follows from formula (8), because g = % =

const at T — oo,

An apparent break-down in the concentration pro-
file in the gas is stipulated by the fact that, at short con-
tact times, the layers closer to the end of the bed do not
contact with the gas, containing the admixture, in the
plug-flow reactor. In a real system, such breakdowns
should not be observed because of longitudinal mixing.

The sharpness of a concentration profile is deter-
mined in the general case by the ratio between the lin-
ear rate o of the flow and the rate constant k of the reac-
tion between the admixture and absorbent. Figure 3
shows the profiles a(/, ) at variable k and fixed .

As the curves in Fig. 3 show, when we vary the ratio
0% (which is equivalent to choosing different absor-

bents) or at different ratios between the rate of absorp-
tion and the rate of the gaseous flow, different distribu-
tions can be observed: from a slow decrease in the con-
centration in the bed to the frontal distribution.

To end this article, we consider possible deviations
from the distributions due to the possible influence of
longitudinal mixing. A complete description of such a
nonstationary system is very difficult. However, if we
consider the bed of granular absorbent, the expected
effect of longitudinal mixing is insignificant. Neverthe-
less, we can make some estimates. Let us assume that
convection is negligible for a rather long bed whose
characteristic length is substantially greater than the
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Fig. 2. Admixture concentration profiles in the gaseous flow
along the reactor axis.

diameter of particles. Then, longitudinal mixing only
occurs due to molecular diffusion.

In this case, the initial set of equations takes the fol-
lowing form.

oc d’c _dc . da

B TRy A T T
da _ a
35 = kc(l-—A).

Obviously, the effect of longitudinal transfer can be
neglected if the strong inequality is fulfilled:

7l e
Yk ol

which is a necessary and sufficient condition.

D < |

k4
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Fig. 3. Admixture concentration profiles in the absorbent
along the reactor axis at different k (0 = 1.0).

Let /, be the distance along the reactor axis at which
the concentration changes by an order of magnitude for
the time . Then, the derivatives can be approximated by

the ratios of the corresponding values: D% < ml£ or
1
i

1< %11- The last expression is equivalent to the ine-

quality Pe > 1, which is a necessary and sufficient con-
dition for the applicability of the above solution to the
problem of admixture absorption from a gaseous flow.
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