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Abstract--Dynamics of admixture consumption from gaseous flow during a reaction with a solid reactant is 
expressed in terms of a set of two partial differential equations. The analytical solution to the problem is found. 
The solution is illustrated by the plots of admixture distribution in the gas and absorbent. 

The problem of dynamics of admixture consump- 
tion from a gaseous or liquid flow has a variety of tech- 
nical applications, including environmental safety. The 
dynamics of catalyst poisoning by an admixture in a 
gaseous flow belongs to the same class of problems. 

The two most general technical solutions for the 
removal of an admixture from a gaseous flow are 
reduced to admixture consumption by an absorbent or 
a chemical reaction with a solid reactant. 

The problem of admixture consumption at a linear 
rate o) by absorption was considered by Tikhonov and 
Samarskii [1] based on the solution proposed in [2]. 
These authors formulated the problem as set (1) of two 
partial differential equations with respect to the 
unknowns c(I, t) and a(I, t), which are the concentra- 
tions of absorbed substances in the gas and absorbent, 
respectively: 

t c ~c ~a -r = 35 + 35 

~a k(c  - Ceq ), 
35 = 

( l )  

with the initial conditions c(l, t = 0) = 0 and a(I, t = O) = 0 
and the boundary condition c(l = 0, t) = C, where / is the 
coordinate along the axis of the gaseous flow, t is time, 
and w is the linear gaseous flow rate. 

In the case of the Henry isotherm Ceq = 7a (where ~, 
is the Henry coefficient), the authors suggest an analyt- 
ical solution. In the case of the Langmuir isotherm, the 
solution to the problem can be obtained by the finite- 
difference method. 

This paper is devoted to the problem of admixture 
consumption from a gaseous or liquid flow by the reac- 
tion with a solid reactant (absorbent). 

A mathematical description for admixture con- 
sumption from the flow is determined by the fact that 
the concentration of an absorbed substance affects the 

rate of consumption, and this concentration changes 
along the absorbent bed. The properties of an absorbent 
change along the bed and with time. Let us briefly con- 
sider the physical model of the process. 

Suppose a gaseous flow containing an admixture 
reacts with an absorbent in a cylindrical flow-type plug- 
flow reactor and the reacted absorbent loses its reactiv- 
ity and becomes inert. The proper rate of consumption 
depends on the absorbent properties and concentrations 
of absorbed admixture in the gas. The dependence of 
the rate of consumption W on the admixture concentra- 
tion in the gaseous flow can in most cases be described 
by the second-order equation. If we neglect the diffu- 
sion control, the dependence of the consumption rate 
on the absorbent concentration (or, to be more exact, 
the residual absorbent capacity) can be described in an 
analogous way. We can assume that the rate of con- 
sumption is proportional to the concentration of the 
admixture in the gas, and the current absorbent capacity 
is W= kc(l  - x ) ,  where k is the rate constant of the inter- 
action of the absorbent with the admixture; x is the 

a 
absorbent conversion x = ~ expressed as the amount of 

reacted absorbent a divided by the total absorbent 
capacity A. For the absorbent bed in a flow reactor, this 
equation characterizes the situation in an arbitrary sec- 
tion of the absorbent at a certain distance l from the 
edge of the bed, and x(1, t) is determined as a fraction of 
the reacted absorbent in this section at the time t. 

Then, for the rate of reacted absorbent accumulation 
in the section l, we can write the equation 

Ot 

This equation is linear with respect to unknown func- 
tions, which makes it different from the second equa- 
tion of set (1). 

To describe a change in the concentration of the 
admixture in the gaseous flow due to its consumption, 
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we can use an equation that is analogous to the first 
equation in set (1) proposed by Tikhonov and Samar- 
skii. 

Thus, we have the following set of equations: 

f Oc Oc Oa 
-to~-~ -- ~ + ~  (3) 

L 
with the initial conditions c(l, t = 0) = 0 and a(l, t = O) = 0 
and the boundary condition c(l = O, t) = C (where a has 
the concentration units as in set (1)). 

To solve set (3) of equations, let us change variables 

{ ~ = 1  D 0 
t -  / " After expressing ~ and ~ in terms of 

o~ 
O O 1 2  0 O 

new variables, ~ = Ok to Ox' Ot = b-x we obtain a 

new set of equations 

f Oc Oa 
= 

 c(1 A) 

or because k = l, 

f 0c 0a - t o ~  = ~-~ (4) 

Let us consider how the initial and boundary conditions 
change. At x = 0 l = cot. By this time, the gas reached the 
section l, and then a(l, x - 0) -- 0. At l = 0 x = t, and the 
boundary condition does not change: c(l = 0, x) = C. If 
we fix the parameter l = 0, the set of differential equa- 
tions is reduced to an ordinary differential equation 
with respect to a(l = 0, x) - a('~) and the initial condition 

,4 da 
a('~ = 0) = 0. Then we obtain the equation ~-~ ~-~ + a = 

_CkT 
,4 whose solution a(l = 0, x) = ,4(1 - e ) is the bound- 
ary and initial condition for a(l, "0. 

If we fix the parameter x = 0, we obtain an analogous 
condition for c(l, x), and solve equation c(l, x = O) = c(l) 

dc 
for -m~-~ = kc with the initial condition c(l = 0) = C. 

__k l 
Then, we arrive at c(l, x = 0) = Ce ~ 

Thus, the initial set (3) is transformed into 

_ 0c 0a 

=  c/l A) 
with conditions 

a(l  = O, x) = A ( 1 - e  -ck~) 

--~l 
c(l, "c = O) = Ce ~ 

(5) 

Let us express c(l, x) using the second equation: c = 

1Da A 
k ~ x  A - a  

0a Of 
- -  ~ and denotefl/, x) by A - a when ~-~ = -~--~ 

A 1 O f )  
and c = k f ~-x "Then, the set is simplified: 

- - ~ ,  

A l O f  

= k f O x '  

_% 
f ( l  = O, x) = Ae  

c(l ,  x = O) = Ce  

(6) 

Let us differentiate the second equation of set (6) with 
0c 

respect to I and equate it to ~ from the first equation: 

l ~ f .  The latter expression can be rear- 
k OI~.fO'cJ = coox 

O (1 O_f~ k Of Let us then use ranged as follows: ~ . ~ - ~ )  + A--~O-x" 

 (!oq o (loq 
the identity OI~,SOx) = ~'x~,f~ J: 

O ( I O f ~  . k Of  O ( I O f  k ) ~ . ~  j ,  ~--~--~ = 0 or ~ - - ~ . ~  + ~--~f = 0. 

The last expression means that the term inside 
the brackets is independent of x and equals some func- 

10f  k tion h(/): ~ + ~-mf= h(/). This allows us to obtain 

the solution to our problem. 
After switching to complete derivatives, the latter 

expression is a Bernoullian ordinary differential equa- 
tion with respect to f(l), which is solvable by the stan- 

1 
dard substitution z = ~ .  With the initial condition f ( l  = 
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_% 
0) = Ae , it has the solution: f(1, z )  = 

l 

e I h0.)dk 
? 

A ~ . Using the second equation of 

e + 7,,/e 0 dl 
vj,.j ~ 

0 

the set, we find c(l, x) = C 

Ckx 
e 

l 

Ckx ' Ih(~)d~. 

�9 Let us 

~ e + e dl  
o 
_k  I 

apply the condition c(l,  x = 0) = Ce 0' ; then, we have 
t t k t f !h  e (~)d~dl = ~ (e ~~ - 1), and the derivative in l is 

o 
! 

h(~.)d)~ O) 
e 0 = e  

l 
After substituting the last expression and "c = t - - 

r 
into formulas for i l l ,  "c) and c(l, % we find the final 
expression (7). 

%,) 
e - 1  

a( l ,  t )  = A ck( ' I~ ~-l 
-A t -?oj 

e + e  `~ - 1  
(7) 

e 
c( l ,  t)  = C 

cd ,  t~ k l 
t -Fo) 

e + e  ~ - 1  

By dividing (7) by a(l ,  t) and c(l,  t), we arrive at a 
rather simple expression: 

a : -%-')/ 
c C~, e . (8) 

Another important property of the above solution is 
associated with the equality 

f 
j [ a ( / ,  , ) +  c(I ,  t ) ] d l  : A?ln~eC,(,_~ ) , (9) 

+ e  r - I  
0 ) t  

from which we have S [ [a(l, t) + c(l,  t)]dl = CSoot equal 

0 
to the amount of admixture supplied to the reactor by 
the time t. 

For the illustration, we constructed the plots for c(l, t) 
and a(l ,  t) for sequential time intervals using the follow- 
ing set of rate parameters k = 1.0, m = 1.0, C = 1.0, and 
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Fig. 1. Admixture concentration profiles in the absorbent 
along the reactor axis. 

A = 1.0 (Figs. 1 and 2). As can be seen from these fig- 
ures, the distribution of concentrations in the gaseous 
flow for this set of parameters is close to frontal. It is 
also seen that the concentration profiles of the admix- 
ture in the gas and absorbent become more similar with 

time. This follows from formula (8), because a A 
c C 

cons ta tx  ,oo.  

An apparent break-down in the concentration pro- 
file in the gas is stipulated by the fact that, at short con- 
tact times, the layers closer to the end of the bed do not 
contact with the gas, containing the admixture, in the 
plug-flow reactor. In a real system, such breakdowns 
should not be observed because of longitudinal mixing. 

The sharpness of a concentration profile is deter- 
mined in the general case by the ratio between the lin- 
ear rate co of the flow and the rate constant k of the reac- 
tion between the admixture and absorbent. Figure 3 
shows the profiles a(l ,  t) at variable k and fixed r 

As the curves in Fig. 3 show, when we vary the ratio 

k (which is equivalent to choosing different absor- 
O3 

bents) or at different ratios between the rate of absorp- 
tion and the rate of the gaseous flow, different distribu- 
tions can be observed: from a slow decrease in the con- 
centration in the bed to the frontal distribution�9 

To end this article, we consider possible deviations 
from the distributions due to the possible influence of 
longitudinal mixing. A complete description of such a 
nonstationary system is very difficult. However, if we 
consider the bed of granular absorbent, the expected 
effect of longitudinal mixing is insignificant. Neverthe- 
less, we can make some estimates. Let us assume that 
convection is negligible for a rather long bed whose 
characteristic length is substantially greater than the 
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Fig. 2. Admixture concentration profiles in the gaseous flow 
along the reactor axis. 

Fig. 3. Admixture concentration profiles in the absorbent 
along the reactor axis at different k (co = 1.0). 

diameter of particles. Then, longitudinal mixing only 
occurs due to molecular diffusion. 

In this case, the initial set of equations takes the fol- 
lowing form. 

I OC+D02C 0c 0a 
- o ~  0l 2 = ~ + ~ - ~  

[ Oa-~= kc(1-A)" 

Obviously, the effect of longitudinal transfer can be 
neglected if the strong inequality is fulfilled: 

012 "~ CO~l, 

which is a necessary and sufficient condition. 

Let li be the distance along the reactor axis at which 
the concentration changes by an order of magnitude for 
the time t. Then, the derivatives can be approximated by 

the ratios of the corresponding values: DCl~ "~ t~ or 

o) 
1 "~ ~ Ii. The last expression is equivalent to the ine- 

quality Pe >> 1, which is a necessary and sufficient con- 
dition for the applicability of the above solution to the 
problem of admixture absorption from a gaseous flow. 
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